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NO NC TURE

cowl radius, dimensional up to Section C.3 and
nondimensional thereafter

one of three parameters used to characterize the inflow

nonuniformity chopped by the propeller, Eq. 56 and Fig.

6a

number of blades in the fan

speed of sound of the medium

nondimensional blade chord for Sears' function

Hankel function of the first kind of order v

modified Bessel function of order v

Bessel function of order v

cowl's reduced frequency, _L/2U

transform wavenumber, dimensional up to Section C.3

modified Hankel function of order v

cowl's halflength or halfchord; also the normalizing
constant in Section C.3

length of lined segment, Fig. 5a

two-dimensional lift [Force/length] acting on an

elemental ring of chord "d_"

index of the series elements for the assumed lifting

solution, Eq. 54a. Also serves as temporal harmonic

counter in Eqs. 57a,b

flight or freestream Mach number, U/c

index of the series elements for the assumed nonlifting

solution, Eq. 54b
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Z liner

time-dependent pressure

frequency-domain pressure, and its circumferential v
mode

incident field pressure

lifting and thickness contributions to the scattered

pressure

field and source values of the radial coordinate,

dimensional up to Section C.3

running radial variable distinguishing among blade

stations, nondimensional

nondimensional range to the farfield observer, with
origin at the cowl's geometric center r=0, z=0. 8o is

its dimensional version, RoL/2

Sears function, Eq. 59

time

Chebyshev polynomial of the first kind, Eq. 54b

aerodynamic transfer function, Eqs. 57a,b

one of three parameters used to describe the inflow

inhomogeneity which the propeller blades must cut,

Eq. 56 and Fig. 6a

axial velocity induced by an elemental lifting ring

freestream or flight speed

Chebyshev polynomials of the second kind, Eq. 54a

radial velocity induced by a lifting ring

+

incident field's radial particle velocity over r=a

axial coordinates for receiver and source,

respectively, dimensional up to Section C.3

propeller's axial station

midpoint axial position for the liner ring patch, Fig.
5a

liner impedance, Eq. 49
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Greek

G

80

_v 1'*(

v

p

n

axially variable admittance of the liner, normalized by

the fluid's characteristic admittance i/pc, Eq. 52

I-M 2

transform wavenumber for the radial direction, Eqs. 8

and 50

unknown diffraction loading p+-p- in the lifting

problem, and unknown monopole strength w÷-w- for the

nonlifting problem; each of these two quantities takes

on a v subscript when it becomes the circumferential

mode of the parent variable; "+" and "-" denote r=a ÷

and r=a-

liner loss factor, Eq. 49

directivity angle, Figs. 7a,b

lifting kernel, or influence function linking the

induced radial velocity to the virtual lift

kernel linking the radial upwash to thickness source

strength, or pressure to the virtual lift

kernel linking pressure to the thickness source

strength

circumferential mode

background fluid density

field and source values of the circumferential angle,

Fig. lb

running angular variable in Eq. 56

angular position around the propeller disk of the

maximum momentum deficit in the inflow inhomogeneity,

Fig. 6a

propeller's rotational speed

frequency, mB_ in the tonal problem of Eqs. 57a,b
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AEROACOUSTIC DIFFRACTION AND DISSIPATION BY A

SHORT PROPELLER COWL IN SUBSONIC FLIGHT

R. Martinez

Cambridge Acoustical Associates, Inc.

Cambridge, Massachusetts

I ABSTRACT

This report develops and applies a new acoustic diffraction

theory for a ring wing in unsteady compressible flow. The

motivation of the study is the current need to predict the sound

scattered and absorbed by a short duct, or cowl, placed around

typical sources of propeller noise. The modelled cowl's inner

wall contains a liner with axially variable properties. Its

exterior is rigid. The analysis replaces both sides with an

unsteady lifting surface coupled to a dynamic thickness problem.

The resulting pair of aeroacoustic governing equations for a

lined ring wing is valid both for passive and for active liners.

The independent character of the incident field that drives

these two equations implies no approximations:. The new theory

is thus ideally suited to "marriages" with existing sophisticated

predictors of the propeller nearfield for the unducted

configuration. These predictors will supply the new cowl

diffraction theory with its known "right side", on a case by case

basis.

The solution of the coupled integral equation pair yields

the effective dipole and monopole distributions of the shrouding

system, and thus determines the cowl-diffracted component of the

total field. The sample calculations presented here include a

preliminary parametric search for that passive liner layout which

in some sense minimizes the shrouded propulsor's radiated field.

The main conclusion of the study is that a short cowl

passively lined should provide moderate reductions in propeller

noise.

:Perhaps a better term than "independent character" is "modular

character". This statement simply declares thatthe thin-shape

diffraction analysis proceeds without approximations once its

incident field has been defined.

\
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II INTRODUCTION

A. Motivation and Objectives of the Research

There is a need for rigorous and affordable predictions of

the acoustic field diffracting from a lined propeller cowl of

finite length I (Fig. la). The hope is that a properly designed

short duct, e.g., one that takes due note of the position of its

edges and liner relative to the sources it contains, will either

reduce or favorably alter the radiation emerging from its ends.

Recent estimates of planar edge diffraction by Dittmar 2 and by

Amiet _" suggest that this could indeed be the case.

This report develops and applies an aeroacoustic diffraction

theory for a lined ring wing of finite chord (the cowl) in

unsteady subsonic flow (Fig. ib). The modelled cowl's internal

liner is axisymmetric, but with physical and geometric

characteristics that are otherwise left arbitrary. The liner

contributes, by virtue of its finite reactance and resistance, a

nonlifting unsteady flow of strength which is unknown a priori.

This virtual flow from the dynamic "thickness problem" combines

with that of the cowl as a lifting surface in satisfying the

geometry's boundary conditions, e.g., in satisfying flow tangency

over the rigid parts of the shroud's inner and outer sides. The

lifting and nonlifting unsteady problems are coupled.

The cowl's static angle of attack is zero. The sole source

of incident flow normal to its surfaces is the propeller-

generated acoustic field insonifying it from within. The

mathematical descriptions of the acoustics and the aerodynamics

of the system are really the same. Put more specifically: the

boundary conditions which diffraction theory imposes on an open-

ended duct in a freestream by default are, or become, a lifting-

surface aerodynamic theory for a ring wing (coupled to a

nonlifting problem due to the liner, as explained above).

This lifting-surface theory automatically isolates the

phenomenon of edge diffraction when the liner is taken away: the

thickness problem disappears then. The treatment here of the

remaining pure-lift equation is unorthodox. The approach uses a

circumferential modal expansion to remove the ring wing's

spanwise direction and all of its anticipated liabilities, e.g.,

its Mangler singularity. The result is a benign but rigorous

integral equation for the cowl's fore/aft chord that trades these

classical difficulties for the need to compute a simple product
of Bessel functions and an associated circumferential modal

series in terms of these functions.
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This new analysis for a three-dimensional cowl of finite

length takes a spectral approach to the representation of its

lifting and nonlifting kernels. The final forms of these are in

terms of contour integrals in wavenumber space. These contours

expose the "guts" of the influence functions they describe; e.g.,

the transform of the lifting kernel displays its formal wake-

shedding capability explicitly through a simple pole. The

spectral analysis also serves to connect the new theory to its

predecessors, thereby checking it, e.g., to the "pure"

diffraction case of the author's Refs. 4a,b for U=0. Section A.2

thus shows how the contour of integration of general

aeroacoustics links steady and unsteady aerodynamics for ring

wings to the theory of (flowless) diffraction for open-ended

ducts.

The demonstrated steady limit of the novel lift theory (with

its steady trailing vortices) could predict already the airloads

that a cowl would experience when placed at an angle of attack,

as well as the steady but spatially nonuniform interference flows

that the system would induce over the plane of its internal

propeller.

The new model for the cowl shares an important feature with

Amiet's simpler two-dimensional analysis'" for a planar airfoil

in subsonic flow: both include the effect of the freestream on

the propagating incident and diffracted fields. The fully

coupled theory for the cowl also accounts rigorously for the very

different kind of acoustic scattering that occurs at the liner's

axial discontinuities (note the three discrete liner rings in

Fig. Ib, as an example). The cowl's virtual flows contribute

only small disturbances to the medium. The analysis is linear.

These virtual flows, once found, furnish the dipole and

monopole strengths of the cowl's diffracted or scattered field,

which added to that which is incident from the propeller produces

the total acoustic pressure as a function of listener position.

A primary objective of the study is to predict this last quantity
for two kinds of observers:

(i) Passengers in the aircraft to which the cowl belongs. Here

the field positions correspond to points along the cabin's

outer wall. Arriving rays must cut through a uniform
meanflow of Mach number M.

(2) Listeners on the ground, where the medium is still and the

overhead acoustic sources are in motion. The propagation of

3



sound in this reference frame includes such familiar effects

as Doppler shifts and the enhancement of ray amplitudes in
the forward direction.

The differences in the fields heard by these two types of

observers disappear with a vanishing value of the Mach number M.

The first task for the calculations presented here is to

determine the theoretical degree of edge shielding provided by a

completely rigid short cowl without a liner. A second set of

predictions explores the sensitivity of the field radiated by the

complete lined system to differing geometric layouts of its

liner. The idea is to maximize the combined, and generally

coupled effects of liner dissipation, finite-liner scattering,

and edge diffraction at the cowl's two circular ends.

B. Conte_t 9f the New Work

The presence or absence of a meanflow U has tended to split

cleanly the kinds of acoustic analyses performed for finite or

semi-infinite ducts. Horowitz et al.'s study is typical of

investigations with a freestream'. This paper describes a

computational fluid dynamics solution of an inlet-geometry

problem. The duct is semi-infinite. On the other hand, Refs.

6a,b by Hamdi & rifle, Refs. 7a,b by Fuller and by Fuller &

Silcox, and Refs. 4a,b by the author, are examples of studies
which have not modelled flow effects.

This second group has focused instead on predicting pure

acoustic diffraction for a finite duct driven by relatively

simple internal sources of sound. Fuller & Silcox's analysis and

experiments addressed the problems of edge diffraction and of

diffraction and dissipation by a circumferentially nonuniform and

axially finite liner. The geometry in Refs. 7a,b included a

flange, or baffle, at the finite duct's single opening (the other

end was closed). The solution procedure was to split the medium

artificially into duct-internal and duct-external parts and to

describe the interior in terms of axial modes with cut-on

frequencies, etc. A system of linear equations coupled the

interior and exterior parts and generated the final solution.

Hamdi & Ville used a variational formulation of the

boundary-element type to treat unflanged ducts with both ends

open in a still medium. Their calculations, however, were only
• 6a,b

for the relatively simple case without a llner .

The author developed in Ref. 4a a spectral formulation for

4



the boundary kernels that arise in the analysis of diffraction

and dissipation for a partially lined pipe of finite length. The

duct was unflanged and with both ends open. The model accounted

formally for the strong acoustic coupling that exists among the

two circular edges when the distance separating them was

acoustically short; i.e., when _L/c=O(1).

Eversman's numerical model has improved on all of the above
by bringing freestream effects to a system of finite length'.

His approach is to apply finite elements to a fluid volume

surrounding the cowl and the internal engine core on which the

propeller is mounted.

The theory developed here incorporates a subsonic freestream

in the analysis of the author's Ref. 4a. It neglects the engine

core but otherwise matches Eversman's model in terms of physics.

The new treatment is "boundary-element" in philosophy, i.e., it

is a rational melding of lifting- and nonlifting-surface

theories, each of which describes the relevant spatial domain in

a manner that requires one global dimension less than finite

elements. The new construction also includes unequivocally the

influence of shed vorticity on the coupled processes of edge

diffraction and liner dissipation (remember that the cowl is

really a ring wing). The main purpose of section A.2 is, in

fact, to confirm the correctness of the potential-vortex flows

embedded in the new theory.

C. Orqanization of the Report

Section III is a detailed development of the new formulation.

Subsection A contains the lifting half of the problem; B poses

the nonlifting half contributed by the liner. Section C puts A

and B together: C.3 states the final pair of coupled integral

equations in nondimensional form. Readers not primarily

concerned with these specifics should proceed directly to C.3.

Section III.E builds a simple model of the incident field

that drives the integral equations. The current Phase I study

considers a tonal signal resulting from a propeller chopping a

generic inflow inhomogeneity. Each blade in this fan is a

spanwise continuum of strips that are chordwise compact and

unpitched, i.e., that lay flat On their plane of rotation.

Future applications of the new cowl theory will replace this

driver with more sophisticated predictors of propeller radiation

in free field; see, for example, Hanson', and Dunn & Farassat *°.

Section F writes down the final farfield equations both for

incident and diffracted fields, both for aircraft- and ground-

reference frames. Section IV discusses sample calculations.

5



III FORMULATION OF THE AEROACOUSTIC DIFFRACTION/DISSIPATION
PROBLEM OF A SHORT LINED PROPELLER COWL INSONIFIED-FROM

WITHIN

• - -- - L .......

A The "Lifting" Unsteady-Aerodynamics Problem for the Virtual

Dipoles mak_nq up the Cowl's Two-Sided Surface

A.I Development

A convenient starting point in the development of the

relevant influence function for the lifting problem is the

Helmholtz integral equation for a medium generalized to include a

uniform meanflow U. A standard reference is Goldstein n, who

incorporates the effects of freestream U in his definition of the

freefield Green's function G:

[( )/5(r,(ll, z)=a f dzS_l) A _(_=a,_,z) .G(r,d_,z;a,_,-z)
-Lll 0

_a.GcT_(r,,, z;_=a,g,_) A/5 (7=a,_,7)]
(i)

The dependent variable on the left side of Eq. 1 is the

scattered pressure field p in the frequency domain _. The

corresponding symbol p, without the tilde, will eventually denote

pressure in the time domain and will enter the development here

in the "incident field analysis" carried out below. Eq. 1

describes a cowl that extends from _=-L/2 to L/2, with an

infinitesimally thin wall that is at a radial distance "a" from

the axis r=0. Angle _ runs in the circumferential direction as

depicted on the right part of Fig. lb.

Eq. 1 is actually the jump version of Goldstein's form for

the same equation: E.g, quantity Apv.ad_dz in Eq. I is the

elemental virtual force straddling the cowl's thin wall at axial

position _,

[/5(?=a÷,_,'z) -/5 (_=a-,iiT,z) ] .ad_d'z = [/5+(a,@,z) -/5-(a,_,_) ] .a(:i_

- [A/5(a,@,_) ] .ad_dE . (2)

The lifting kernel about to be derived could be interpreted

as being the result of a number of analytical operations on Eq.

l's -@G/@_ term. But the analysis here will be self contained in

6



that it will begin by adding the few extra steps needed to
produce -@G/@r itself.

This influence function po, to be defined as the product of

-@G/@r and its elemental force-dipole strength Ap,.ad_dz, is the
solution of

@Z 2 "2-D-_'e C2 -_e C 2 am

=- [AI_(a,_,-z)a<_dz]. lim @ . _(r-¥)_8(z-_)8(_-_) . (3)
r

Subscript "e" and superscript "_" denote, respectively,

"elemental" and "lifting problem". Symbol c stands for the

spatially uniform sound s_eed of the medium and M=U/c, the flight
Mach number. Parameter _ is i-_. Subscript "2-D" on the

Laplacian operator on the left side applies to the r,# cross-

sectional plane. The complete differential operator displayed is

the frequency-domain (e) version of that from the linearized

convected-wave equation; see, for example, Eq. 1.61 of Ref. 11.

The following standard change of dependent variables,

_:(r,_,z)--p:(r,_,z)e _ _'" , (4)

turns Eq. 3 into

-- 0 2 1
p2 a2P:az2 +v_p: ÷ c_ _2a:

i_e
=-e c_,'[A_(_,_)ad_d_] _lim-a 6(z-r) b(z-z)b(_-_) . (5)

r-a _ Y

The (eM/c)/_ 2 factor in the exponent of Eq. 4 matches that in the

first term of the argument of the exponential in Adamczyk's n Eq.

15, after specifying his result to the case of zero sweep.

The "a" radial argument has disappeared from what would have

been Ap(a,...) on the right side of Eq. 5, for the sake of

simplicity of notation. The next step is to define the transform

pair

7



P*(r,_;]_) :'[ dz ei_Zp:(r,(_,z) ;
J 2_

--Iw

p:(r,_,z)=/d_e-f_zP'(r,4_;_) (6a, b)
-m

and to apply Eq. 6a to Eq. 5. The result is

V#__p.+y2p.=_[A_(_,_)ad_d_] e lira @ 6(r-?) b(_-_) , (7)

with

-- c2 _2
(8)

Eq. 7 has solution

P'=- [am (_, z) ad_dz] e _ e
2=

•-E-*a Or_ "_1

where the group -i/4.Ho(*)[7/.. ] satisfies (_+7')(.)=6(r-_)/_

.6(#-_). Eqs. 6b, 4, and the familiar modal break up of the

"origin-displaced" Hankel function Hoc**, give that

p:(r,¢,z) = lap (_, _) a_d'_] e

" " IHv(yr) _(ya) for r>a

v--- _ Hv(ya) Jv(Yr) for r<a

(i0)

The next step is to consider a circumferential continuum of

virtual elemental lifting elements in order to build a singular



ring at z=_. One defines p='(r,@,z) as the pressure field due to

this constructed elemental lifting _ing:

2_

0

(ii)

The integral in Eq. Ii is over _: The d_ differential is

part of the definition of p, in Eq. I0. The result is a

compound ring dipole source of strength given by

2_

/ d_ eI'¥ A_ (_,-z) - 2_ A_v (-z)
0

(12)

This leads naturally to the physical interpretation of

circumferential mode Ap,(z) as the effective amplitude of the

elemental ring at axial station _. A similar reasoning will

eventually identify the circumferential modal form of the left

side of Eq. 10 as given by the function within the v sum on the

right side of that expression.

The development will postpone this second modal definition

and will now instead determine the full three-dimensional

velocity field associated with _r•. The component of interest in

the boundary-value problem will be the radial velocity

w=i(r=a,#,z) across the cowl's infinitesimally separated

surfaces: across r=a*, -L/2<z<L/2. This velocity field is

available from the inverted radial momentum equation with the

constant of integration wr'(z=-m ) prescribed to be zero on

physical grounds:

(13)

In Eq. 13 p is the medium's background density.
12 it now follows that

From Eqs. i0 and

9



i--z+ "i

-, -ia _ e -_* [A_, (z) dz] e uwz(r=a,,@,z ) =(_) c
V E--m

.• u_ei_y2Hl,(ya) J,t(ya). dz'e (14)

The indicated continuity of velocity across the wall of the

elemental ring, as implied by the radial argument on the left

side of the equation, stems from the fact that the derivative

with respect to r of the right side of Eq. i0 yields the same

thing whether r>a or r<a. This is as should be for the lifting

problem because the distribution of virtual dipoles to be

postulated over -L/2<z<L/2 will be equivalent to a superposition

of bound vortex rings. And it is well known that an unbroken

vortex sheet induces a continuous flow field normal to itself.

The "-_" bottom limit of the z" integral that appears last

in Eq. 14 causes that part of Eq. 14 to exist only for

Im[_] >Im[- _ _ 2]U
(15)

This relationship has temporarily generalized frequency _ to be

complex for the sake of emphasis. For R wavenumbers satisfying

Eq. 15, then

which upon substitution into Eq. 14 finally yields that

@er (a, ¢, z) - a e-i'_ c
4 u, _ [A;%, e

/ d_ e -i_(z-_) / /y2
c ]E:+ (a 1 H,(ya) J,(ya)

u"02

(17)

10



The integration contour C is as depicted in Fig. 2a. Its

passage below the branch point at +(_/c)/_ _ and above that at

-(s/c)/_ 2 [these are the zeros of 7 in Eq. 8] is consistent with

the chosen temporal behavior exp(-i_t). And its passage above

the pole at -(_/U)/_ 2 embodies, and is the result of, Eq. 15.

Eq. 17 holds whether or not the boundary-value problem is

separable in the cross-sectional circumferential coordinate #.

From this point on the development will confine itself to

axisymmetric liners and thus to a formulation that is strictly

separable in #. The liner will be able to vary arbitrarily in

the axial direction z, however.

Separability in # will lead below to a set of independent

integral equation pairs for the single variable z: one system,

i.e., a coupled pair, for each mode v for the lifting and

thickness problems. So with

_ (a, _, z) = _ _'z.v(a, z) e-lV_
V s --m

• (18)

D

one now identifies w_v as everything on the right side of Eq. 17

other than the summation sign and the exp(-iv#) term.

Section A.2 below will return to a detailed discussion of

the flows induced by a single dipole ring. The lifting-surface

equation for the complete cowl requires now the induced velocity

field due to a continuum of such rings extending over

-L/2<_<L/2. This collectively induced radial velocity will here

be w'. The final modal integral equation for the lift
distribution is then

L/2

(z)= dz K:''(z-z) (3)
• (19a)

where the indicated lifting kernel is

ii



-i--_c (z-T)
e

2=pU' z-_

-i_c (z-_)

4pU ¢ _+_ 1 _a Ju

The reason for the "_,_" superscript will become obvious

below, with the analysis of the nonlifting problem. Eq. 19b's

first line showcases the locally steady, singular behavior of the

kernel as z approaches _. This first term on the right side

comes from the subtraction of the high-wavenumber asymptote of

the transform's _ integrand. The second line of the equation is

consequently integrable in z as _ approaches z (it behaves as

log(z-z); cf. Wong TM for the precise form of the remainder term,

determined from a spatial-domain rather than a spectral analysis

of the kernel function for the special case of pure diffraction,

U=0). The second line in Eq. 19b also contains the bulk of the

unsteady aeroacoustic information of the complete influence
function.

This split of the kernel into its regular and singular parts

resulted from the following analytical observations: first the

limit,

iim72 , , =/_
_._ Hv (Ta) Jv (7a) = a

• (20)

so that

lim f d_e -_(z_)z_ _ + _ 1

u

m

Y2H_(ya) JIv(Ya)= i_/_.a e-i_(z-_)
(21)

The spectrum on the right side of Eq. 21 furnishes the term

that was subtracted from the _ integrand in Eq. 19b. The limit

on the right side of Eq. 20 requires the intermediate conversion

of the standard Bessel functions to their modified forms. To

find what the right side of Eq. 21 is, in (z-z) space, one

recalls the familiar spectral breakup of the zeroth-order Hankel

12



function [see, for example, Goldstein n, p. 244, first equation

in Appendix 5.B]:

i lim_z 2 dAe'i_(z-_)
k-0 -. __k 2

lim @ H(ol)(klz__l) (22)
=-_ k-o a"_

Here "k" is a temporary constant. Taking the indicated

limit of the two sides individually yields

@ 2idl _l e_iX(,__ ) = -2i _ loglz-zl = ---z__z both for z>-z and z<_ . (23)

In conclusion,

lim [d_e -n_(z-_)72H_(ya) jl(ya) = 2__.__!_i . (24)

z_z Jc _+ _ 1 _a z-z

u 82

A.2 Physical Interpretation of the Lifting Kernel [ e.e and the
.... _ "V f

pnification of Aerodynamics and Diffraction Theory (U=O) fo r

Thin-Wal_ed Shapes of Revolution

The analysis in Eqs. 21-24 has determined the character of

the lifting kernel as the source and control points approach each

other. Its (z-_)'* Cauchy-Principal local dependence is

fundamentally different from that of the associated diffraction

problem lacking a meanflow 4''b. The discussion will return to

this, after Eq. 30b below.

This first term on the right side of Eq. 19b is neither a
function of the cowl radius "a" nor of the circumferential mode

v. This nondependence is the result of the dipole ring appearing

locally straight to fluid points close to it. It acts locally as

if it were in an unbounded two-dimensional medium without length

scales. The first term on the right side of Eq. 19b accordingly
matches the familiar influence function for lift and induced

upwash in two dimensions (see Ref. 14's Eq. 5-58, where the bound

vorticity "7(x,)" becomes -Ap,/pU in the present terminology due

to Bernoulli's equation for the locally steady limit _z).
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This deduction of [,_'J's local behavior is the first of

several strong checks on the formulation. It came, as seen

above, from the large-R form of the kernel's spectrum. The

second check comes instead from the spectral behavior for finite

R, specifically from R in the vicinity of the three singularities

in Fig. 2a.

First, to dispose of the role of the branch points, which is

qualitatively the same as that in the familiar case of pure

diffraction with U=0: Deforming contour C to the lower half

plane for z>£ and wrapping it around the point -(_/c)/_ 2 produces

an acoustic ray that spreads spherically as 1/(z-z) for z-_+_.

Its phase is the issue. This is determined by the product of the

exponential inside the transform evaluated at R=-(e/c)/_ 2 and the

exponential term outside the transform on the first line of Eq.

17:

(25)

For z<_ a similar result springs from the neighborhood of the

branch point at +(_/c)/_2: A spatially spreading ray with phase

factor ex_ -i[e/c(l-M)][(z-_)+(c-U)t]} .

These phase terms have included the exp(-i_t) temporal

factor for the sake of clarity. The downstream wave in Eq. 25

"rides" the meanflow -- its speed relative to the cowl is c+U;

whereas the wave traveling upstream must fight the current -- its

speed relative to the cowl is c-U. Both rays display a correct

spatial "Doppler" shift: The spatial variation of the shortened

acoustic signal going upstream is that prescribed by the

relatively high wavenumber _/[c(l-M)], while that of the

stretched-out downstream signal comes from _/[c(1+M}].

Consider now the pole in the first term within brackets in

Eq. 19b's second line. It has no effect upstream of the

elemental lifting ring, z<_. For z>_, i.e., downstream of the

ring, contour C picks up the pole upon dropping down to the lower

half plane of Fig. 2a. The residue, by definition, does not

decay with increasing distance z-_ if _ is real (i.e., it does

not spread, unlike the branch-points field). The part

contributed by the exponential inside the integrand must be

combined again with the exponential outside which appears on the

first line of Eq. 17. The complete residue of Eq. 19b's second

line is, times exp(-i_t)

14



Residue

u

The above phase factor is

e c[H t_Mz 1__z (z-T)-i_c= ei_ [(z-T)-_] , (26b)

so that Eq. 26a describes a convected, nondecaying velocity

pattern that exists only along the z>z half of the infinite fluid

shell defined by r=a, -_<z<_: The anticipated shed/trailed wake

of the elemental liftin_ ring. The residue in Eq. 26a is not a

function of Mach number M, which is as should be because the

speed of sound is irrelevant in the still-fluid frame of

reference of the shed/trailed vortex system.

It is important to admit now that this argument regarding

the interpretation of the correctness of the lifting ring's free

vortex flows has really been only qualitative. That is because

the lifting problem makes no a priori physical demands on the

induced normal upwash w,_ other than continuity across r=a, which

the construction has satisfied trivially. There is no

independent gauge on Eq. 19a's left side. The wake check in Eqs.

26a,b is therefore not as persuasive as it could be.

What is needed is a frontal attack on the component of

induced velocity "_" in the direction of the cowl's z axis. That

analysis would be definitive because it would relate

unambiguously the shed vorticity field A_ to the oscillatory

force that causes it, i.e., to Ap,(_)adz on the right side of the

equation. The expected identity is a well known variant of

Kelvin's theorem of vorticity conservation: The ring-shaped

vortices shed, shown at the bottom right corner of Fig. ib, must

cancel the temporal change in bound strength associated with

Apv(z)adz.exp(-i_t).

This calculation will be a digression because once checked,

the shed vortices need never agaxn be referred to. The lifting-

surface theory, Eq. 19a, contains all of their induction effects

implicitly. The first step is to invoke the z-momentum version

of Eq. 13 in order to compute the lifting ring's u_,

perturbation velocity component in line with freestream U:
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-i_z
.., =_e___._ dz o 8/_r,, (.r=a± z o) e
ur., (a*,z) pu -. 8z" "

(26c)

From Eqs. 10-12, this field is

_L (a*,z)= - ia [A/_,(_)d_] e
l,V

./d_e_i_(z__) C @2 H,(ya+) J_,(Ya)

u _2

} (26d)

The term within large curly brackets that appears last in

the integrand contains, in its upper line, the Bessel function

product of the r=a ÷ solution. The lower line contains the r=a-

part corresponding to the lower of the two signs in the "a i"

argument of the equation's left side. It follows that the

strength of clockwise vorticity at a freefield axial position z
is

f]rJ,(a ÷, z) - _r_.,(a', z) --A0_r.,(a, z)

=(- i_u)[A',(z)dz] e

"fd_e-_(z-_'c ]_+ _c _21 7{H,(ya) J,(ya)/ - H_(ya)Jv(ya)}. (26e)

u _2

Contour C in Fig. 2a threads out a spectrum for Eq. 26e that

seems to be still singular at the branch-point zeros of the

radial wavenumber 7. This must only be apparent, however, since

otherwise the solution would produce vortical signals not only

downstream of the lifting ring but also ahead of it. The

expected removal of 7 comes about from the Wronskian relationship

H,(Ta)J '(Ta)-H '(¥a)J,(ya)=-2i/_ya, which gives
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A0'r.,(a,z) = - e c [ d_ c _2 e_i_(,__ )

2

• (26f)

It follows from the empty upper half R plane which now results

from Fig. 2a without branch cuts that the vorticity is exactly

zero for z<z on r=a, while downstream of the elemental lifting

ring it is

i_ [(z-J)-u:]
A_Ir,,(a, z) e -i'c = - /-_ [A_, (3) dz] e u

pU =

Auz" =- pU 2 dt

(26g)

The constant -i_ on the first line of Eq. 26g's right side

is equivalent to the time derivative d/dr. The second line has

removed the tilde from the dependent variable on either side and

has thereby returned each to its time domain. The new equality

has also identified L,=-Apvd_m[pv'-P+]di as the sectional lift

acting on the elemental ring wing's chord dz.

The first argument of dL_/dt accounts for the source

position z=_ on which the strength Ap.(_,t) obviously depends.
The second, t-(z-z)/U, is the wake's retarded time. The third

line has invoked the difference in the locally steady version of

Bernoulli's equation between upper and lower ring surfaces: From

Eq. 26c with e=0, one obtains Ap,=-pUAu_,, which upon

multiplication by d_ gives L=pUr v (Fv = Au_.d_). This, in turn,

connects sectional lift L, to the standard definition of the

clockwise circulation Fv and casts the result in one of its more

recognizable canonical forms; e.g., Ref. 14's Eq. 13.27.

The lifting theory in Eqs. 19a,b above is correct.

There have been previous appearances of Eq. 19b's dramatic

pole. In Ref. 4c the author applied the Wiener-Hopf technique to

solve the problem of gust�airfoil interaction at high frequencies

and speeds. This mathematical method is fundamentally a spectral

one. Its application produced then a spectrum for the velocity

17



potential that already contained the pole in question: see Eq. 12

and Fig. 2 of Ref. 4c, which used exp(+i_t) instead of exp(-i_t).

This earlier solution, however, masked the wake role of the

pole for two reasons. First, it addressed the problem of an

airfoil whose chord was semi-infinite, i.e., an airfoil with no

trailing edge and therefore no wake. Secondly, the dependent

variable was the velocity potential. And the discontinuity in

velocity potential across the far wake of a finite-chord airfoil

bearing a noncompact airload is known to be precisely the same as

that across the semi-infinite chord of a leading-edge airfoil

(cf. Howe's spatial-domain analysisls).

The interpretation of the pole's wake role came after Eq.

A.17 of Ref. 4d. That later work noted that the shed wake

produced from arbitrarily cutting off the leading-edge solution

kept canceling the gust's downwash along the newly created "wake

points": I.e., the flow past this trailing edge, in spite of

having the strange ability to cancel the input downwash there,

was, nonetheless, a wake. It followed that the spectrum's pole,

whose original mission had been to account for true flow tangency

in the semi-infinite airfoil, was just as much a wake pole. Ref.

4d made this connection obliquely immediately before its Eq. A8

and chose instead to pursue a wake analysis in the spatial domain

through a number of equivalent manipulations on the Possio

kernel.

The wake pole, incidentally, arises regardless of the

direction of the lifting element. Here this direction has been

radial because the cowl's surface is normal to r. But the

incident-field model discussed below in section E analyzes

instead a continuum of axial thrust dipoles prescribed over a set

of propeller blades. And the wake pole shows up still: see Eq.

57b, where the pole's position, -_/U_ 2, has turned into the

nondimensional wavenumber -mB_L/2U_'.

Amiet 3b has recently performed a thorough analysis of

airfoil-shed vorticity in the spatial domain. That study

includes the case of a gust straggling behind the freestream that

otherwise would convect it.

The Steady Aerodynamics Limit: A Three-Dimensional Benchmark

Check, and a Specialized Theory for Future ADDlications

The analysis of the shed vorticity has taken a sideways look

at the process of wake generation on the r,z plane of Fig. lb.
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The final conclusions in Eq. 26g certainly seem to give

kernel K,t'* its needed seal of approval, and yet, they really say

nothing about the three-dimensional character of the shed/trailed

vortex system.

The check for the three-dimensionality of [,J'* comes from

the steady-aerodynamics limit e_0. The shed vortex system

disappears then and the remaining trailing vortices isolate the

elemental ring wing's Trefftz flow. These straight vortices must

then obey Kelvin's theorem of unchanging strength with distance z

down the wake, as suggested in Fig. ib's bottom right edge.

This invariance with z is immediately apparent from the fact

that the exponential in Eqs. 26a,b turns into i for _=0. But one

notes also that the product of modified Bessel functions in the

algebraic part of the calculated residue becomes then (Ref. 16)

( {lim Kvl _a =
const, for v =0

• (27a)
-2. (_V/2 a2) for v_0

It follows that in Eq. 26a,

lim (u)2K/J_a_i//(oa_= { 0o u I u I -vl2a

for v =0
• (27b)

for v_0

The first line on Eq. 27b's right side states that when the

ring's steady loading pattern is uniform in the ring's

circumferential (spanwise) direction, i.e., when the

circumferential mode v is zero, the trailed vortex system

disappears too.

This is again as should be, because each trailed vortex

filament is the result of a differential change in bound vortex

strength along _. I.e., the purpose of each trailed filament is

to avoid a violation of Kelvin's theorem along _ by the bound

circulation. The trailed vortex system becomes superfluous

(zero) when the lifting ring's loading distribution is

circumferentially uniform: when v=0, or more precisely, when

Ap,=0 for v_O.

The second line on the right side of Eq. 27b declares that

when this loading is circumferentially nonuniform the trailed
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vortex system is born naturally out of the product of the

constant -v/2a 2 and Ap,. This extra factor of v times -i acts as

a derivative with respect to _ on _p(_,_), so that it is this

derivative which then determines the circumferential pattern of

vorticity in the ring's Trefftz, or wake plane.

Eq. 27b has demonstrated that the lifting-surface theory in

Eqs. 19a,b for a ring wing in unsteady subsonic flow collapses,

in the limit _0, to a steady lifting-surface formulation with a

system of trailing vortices that is consistent with the spanwise

variation of the loading imposed. Fig. 2b shows the spectral

structure of steady aerodynamics: All three of its fundamental

singularities converge upon the R=0 origin.

Thinking in reverse, this picture pries apart the three

invisible and confluent singular points of the steady case and

thereby provides a simple generalization to unsteady flows. Fig.

2b represents an analytically compact and liberating alternative

to the usual construction in the spatial domain relying on

horseshoe vortices (see Ref. 14's Eq. 5-35 and then Eq. 7-32).

This steady-limit form of the development could address

steady inflow conditions that are clearly already covered by the

present model but that are beyond the scope of the current study.

E.g., the steady limit could generate the potential interference

flow field produced by the cowl over the internal fan stage when

the whole system is at a static angle of attack. This

"potential-flow shadow" cast by the tilted cowl's inlet on part

of the propeller station would cause the blades rotating there to

feel an additional spatial nonuniformity. The new nonuniformity

in turn becomes an additional cause of unsteady blade forces and

therefore of aerodynamically generated sound.

The canonical interpreta£ion of this theoretically

predictable steady interference field is that of a small

perturbation on the incident freestream. However, it obviously

could be of the first order of importance as a source of

propeller noise.

Yet another Benchmark Check: Unification With the Theory of Pure

piffraction

Fig. 2a, by means of Fig. 2b, has already unified steady and

unsteady subsonic aerodynamics for ring wings. The purpose Of

this section is to show how this picture also contains standard

diffraction theory for thin shapes of revolution in the zero
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freestream limit U_0. The resulting new picture, Fig. 2c, will

end up linking quantitatively the apparently disconnected

disciplines of steady aerodynamics for ring wings and acoustic

diffraction theory for "free-flooded" cylindrical scatterers.

Before writing down the U_0 limit of Eqs. 19a,b, it is well

to state beforehand what one expects of the resulting diffraction

theory.

(i) First of all, a diffracting thin shape of finite size does

not shed or trail vorticity when its bound vortices do not buck a

mean flow [in terms of linear variables at least]. The shed and

trailed vortex systems found above must somehow go away for U_0.

(2) Secondly, the shape's diffracted field, which includes the

pattern of self-induced normal flows (Eqs. 19a,b), must be

acoustically reciprocal: Any pair of source and receiver points

must be interchangeable in the basic influence function.

(3) And third, the resulting kernel should be "hypersingular",

i.e., of the Mangler type, because the mutual local influence of

a source and receiver pair of points is the same for pure

acoustic diffraction as for the spanwise problem of classical

aerodynamics: The perturbed cross velocities of an unswept flat

wing in subsonic flow by definition do not see a freestream

either, and therefore may be regarded as the result of pure
"Trefftz diffraction".

Passing the U-z factor in the coefficient of Eq. 19b's

second line on to its two integrand terms within large square

brackets gives

-i--=c _ (z-_)
=-/-- e

2_pU z-z

_i_ s (z-Y}
ae = P=

4p
fd_e_i;_(z__) y' H_ (ya) J_ (ya) _/___ . (28a)

c _U * p--_ .aU

For U_0 the first term on the right side and the second

integrand term within brackets dominate Eq. 28a as they grow

indefinitely. However, they cancel by construction (recall Eq.

23). Moreover, the wake pole term turns into a multiplicative

21



constant for U=0 and so drops entirely out of the problem,

thereby fulfilling expectation #1 immediately. The result of the
U_0 limit is thus

K,*"( )

U-O 4p_ c

In Eq. 28b the radial wavenumber 7 now comes from Eq. 8 with

_=i (i.e., U=0 - M=0 for a finite sound speed c). The zeros of

Eq. 8 are then the familiar branch points of diffraction

analysis: they are at ± the acoustic wavenumber _/c (cf., for

example, Noble's I_ Fig. 1.1). Fig. 2c here shows the movements

for U_0 of the three basic singularities from Fig. 2a as deduced

from these demands of pure diffraction.

From Eqs. 20 and 21 with _=1 it follows that

m

e-m(,-_) 72 H_ (y a) J_ (7a) : -_/fd_ I]_Ie -i_(z-'i', (29a)_a

while i times the z derivative of Eq. 23 yields that

2

2
• (29b)

Incorporating Eqs. 29a,b and 30 in Eq. 28b finally gives

i 1

2_pr_ (z-z)2

--_ C 4
(30a)

and so,
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u- 0 : (z)= K:°' (3) . (30b)
-L/2

The R spectrum in Eq. 30a's second line is even in the

running wavenumber R. Its transform is even in (z-z) because the

exp[-iR(z-_)] factor becomes cos[-iR(z-z)], which is even in z-_.

And this evenness translates into the reciprocity hoped for in

item #2 above.

The first term on the right side of Eq. 30a displays the

expected Mangler behavior and so confirms requirement #3. The

second line of Eq. 30a is integrable for z_z in the usual sense.

Note that the analysis that gave Eq. 30a has actually cut out the

delicate limiting process (r_a *) that contributes the infinite

negative trough "-2/_" that cancels the two positive infinities

of the (z-_) -2 term that appears on the first term on the

equation's right side. Eqs. 24-28 of Ref. 4a contain these

missing steps which justify the finite-part "X" Mangler sign in

Eq. 30b.

The relative constant -i/p_, between the result in Eq. 30a

above and that in Ref. 4a's Eq. 29, accounts for the fact that

the left side of Eq. 19a is a velocity while that of Ref. 4a's

Eq. 29 is a pressure gradient. And -i/p_ is their constant of

proportionality in the r momentum equation when U=0:

( -i/pc ) @_,'/Sr--_,'.

B The Dynamic "Thickness" Problem due to the Compliant

Dissipative Liner

Eq. 19a, along with 19b, provides the lifting component _t

of the total virtual flow induced by the cowl across its own two-

sided surface. The cowl's liner over part or all of the inner

surface contributes a similar but "nonlifting" component Wvth that

must be added to that of Eq. 19a to complete the virtual flow

picture for the boundary-value problem. The sum wvi + Q,th, for

example, will be called upon to cancel the incident fluid

particle velocities along the duct's rigid outer surface at r=a ÷,

and will thereby generate one of the problem's two coupled

integral equations. The formulation will be valid whether the

liner is passively compliant or actively pulsating, or a

combination of the two.

The construction of the nonlifting flow Q th will begin again
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with its associated pressure, this time given by the first term

in the integrand of the Helmholtz integral equation: Eq. 1 above.

This term implies the following solution for the elemental

influence of a small patch of cowl surface ad_.d_ (hence the "e"

subscript, the same as before for the lifting problem):

" t e-l'_'-¥_fd_e-i_z-_l {H"(Yr) Jv(¥a) for r>a
.--- c Hv (7a) Jv (7 r) for r<a "

(31)

The difference in the signs of the ti/8_ coefficients of Eqs. 31

and 10 reflects the basic sign difference of the two parts of the

integrand of Eq. 1 (see Eq. 61 of Ref. 4a).

The indicated jump in radial pressure gradient in the

"strength" coefficient of Eq. 31 is

) 1A(_r(_=a,_,z)) (_(z=a,_,z)I_(-f=a,_,

(32)

The first task is to convert the above relationship into one

for the jump in the fluid particle velocity across the

temporarily invisible two-side surface of the cowl. The radial

momentum equation in barred source variables is

(33)

And so, Eq. 31 now reads
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_i__ M (z-T)
c p2_e_n(r,_ z)= ipa_d_ e

' 8_

'v--- c HvCya) Jv(Yr) ; r<aJ @z

Eq. 33 has suppressed the r=a argument of the dependent variable

on either side of the equation for the sake again of a simpler

notation.

The nonlifting velocity field associated with the pressure

in Eq. 34 results from application of the integral operator in

Eq. 13. That operator produces again the _+(_/U)/_ 2 wake pole

that appeared in the _ spectrum on the right side of Eq. 17:

-i--w _ (z-T)~oh z) ad_dz e cw. (r,¢, =
8=

• _ e-lV(¢-_)sd_e-_(z-_)
v---- c_+_ 1

u p2

{H_(Yr_a) Jv(Ya)}[-i_ + @]A_(_,z) (35)Y , •
H v (ya) Jv (7r<a)

The situation regarding the singularities of the spectrum in

Eq. 35 is precisely the opposite of that faced earlier in Eq.

26e. The challenge there was to justify the removal of the

branch points while keeping the wake pole untouched. The

Wronskian for Bessel functions performed that task perfectly.

Here the pole must somehow go away and the branch points alone

must stay, because it would be nonsensical for the nonlifting

problem to shed or trail vorticity.

The thickness flow wth(r,#,z) generated by the whole surface

results from integrating over d_.dz. This operation eventually

leads to the same natural definition of the circumferential-mode

versions of the dependent variables in Eq. 35. E.g., it leads to

th.the definition of , (r,z) for the left side of the equation as a

function of r and z only. The surface integration produces
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_th(r,_,z )= a e c e_iV(¢_¥)
8_ o v--- _ 1

u _2

[.o.]• I

H/(Yr>a) J,(ya) 1

Y [H, (y a) jl (y r(a) )

• (36)

Further analytical treatment of the _ integral on the second

line of Eq. 36 now proceeds on a w-modal basis. First there is

the split of this _ integral into its two added terms,

@ _, (_) = -i -_ f e i(r'_ A_, (z)d_el(_"_ _'I -_'_ +_ u
-- 2

- 2 _ •

followed by the integration of the second one by parts:

d_e -- A_, (3) = -i _ + _ _ e l(r+ "_ A_, (3) . (38)-L -e am c _

The temporary "e" parameter in the integration limits of Eq.

38's left side ensures that the integration's end points are just

beyond the spatial extent of the liner. Parameter _ is obviously

analytically unnecessary if the liner treatment does not extend

all the way to _=-L/2 and to _=+L/2.

Adding now the right side of Eq. 38 to the first term on the

right side of Eq. 37 results in the following simplification for

the constant inside the coefficient of the resulting integral:

___ + _ M = _ 1 (39)

U c _ U _

And so, finally,
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_,./_el( _* _ -i_ 6

= -i _ +-6-_ -LI_-
(40)

The multiplicative factor on the right side of Eq. 40

removes the wake pole in the spectrum of Eq. 36, as expected for

this nonlifting problem: The thickness solution neither sheds nor

trails. Eq. 40 in Eq. 36 gives

L/2 "i_--c_ (z-_)

H'v(yr) Jv(ya) ; I>a
c H,(ya) J,(yr) ; r<a

(41)

The last step in the development is to isolate the self

behavior, i.e., the behavior as _z and r_a * of the influence

function contained in Eq. 41. The procedure is similar to that

employed in Eqs. 20-24 above for the lifting kernel. The

corresponding analysis for the integrand in Eq. 41 yields that

lim { H_(ya+) Jv (Ya) } i]__, Y ! = + -- ' (42)
H, (y a) J, (¥ a-) _a

where the "+" sign on the right side stands for r=a ÷ and the "-"

for r=a-. It follows that the _ transform integral in Eq. 41

becomes, as the control and running source points approach each

other on r_a +,
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f y (ya')(ya) = 2_//6
a

c

[ i]+fd_e -i_('-_' yH/,(ya) Jv(ya) -_ . (43)
c

Substitution of Eq. 43 turns the r>a part of Eq. 41 into

L/2 -i--_
_$h (r:a +, z) - A _, (z) [+ d'E,',%¢_) e c'_'("-_)

2 -_/2

• c_e -i_cz-_) -i H_(ya) Jv(ya)-_ , (44a)
c

while for r=a-,

_th(r=a-,z)=_ Awv (z)
2

L/2 -i--_ _ (z-_)

- 2

.f_e -'_''_) [-i--_4aE,,(_,a) J' (ya)+ .--_--]
c

L/2 -i --Q

2
-LI2

• d_e -i_(=-_) -i H_(ya) Jv(ya)--4-_ . (44b)
c

The second equality in Eq. 44b has again invoked the Wronskian

from the discussion following Eq. 26e, in its replacement of

-i(¥a/4)H,J '+I/4_ with -i(ya/4)Hv'J,-i/4_.

The first term on the right side of Eq. 44a is the special-

case result of the general mathematical operation contained in

the second term on the right side of Eq. 13a of Ref. 4e. A

similar statement holds for the first term on the right of Eq.

44b and Ref. 4e's Eq. 13b. That operation here has been locally

equivalent to "@G/@r", while in Ref. 4e it stood for -@G/@r
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because the dependent variable there was the pressure in the

Helmholtz integral equation instead of the velocity used here.

These two derivatives of G match as r approaches r because G then

becomes a function of Ir-rl (to see this, put #=_ in the radical

in the argument of Ho (I) in Eq. 9. That radical then turns into

Ir- ll-

The second term on the right sides of Eqs. 44a and b are

equal, as predicted by the match of the third term on right sides

of Ref. 4e's Eqs. 13a and b. These terms contain the "remote",

or nonplanar effects of Eqs. 44a,b and accordingly vanish as the

radius "a" of the cowl approaches infinity.

The boundary condition along the cowl's lined surface on

r=a- will invoke not only the above velocity, but also the

pressure field associated with it. Its analysis follows a line

very similar to that of the lifting velocity W j, described in

detail above. The discussion will return to this unexpected

similarity shortly.

The pressure generated by the nonlifting problem over r=a -

turns out to be

L/2 A (3)
_,tn(ai,z) =- pU _ d_

2=___/2 z-_
e

L/2 -i _-: (z-_)
÷ #au [ d_A%(-_) e

4 -_/Z

• d_e-i_(z-'i) (ya) jv(ya) _+----_
c

"_ a_ . (45)

This solution applies both for r=a" and r=a +, true to the fact
i

that it stands for a monopole distribution; note the argument a

on the left side of the equation.

The remaining dependent variable needed below to complete

the statement of the boundary condition for the cowl's inner

surface is the lifting component of the pressure field there.
- k

The development for p, follows essentially the same steps as Eq.
44b:
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L/2 -t 6'(z) (z-'_)

' - 2
-Z/2

c

The second term on the right side of Eq. 46 this time

reflects the nonp!anar character of the lifting surface and

therefore vanishes for a_ (cf. comments immediately preceding

Eq. 15 of Ref. 4e). All of the above results collapse to Ref.

4a's corresponding terms upon setting U=0, as they must.

Regarding now the similarity alluded to above, of _th in Eq.

45 to wv-_ in Eq. 19a, one notes that the match among the first

terms on the right side of the two equations is tantamount to a

statement of local reciprocity for two ratios of dependent

variables that are apparently unrelated. The observation is

worth making because it may be of practical value both to future

experimental work and to,he interpretation of old data. Eqs. 45

and 19a therefore state that

~'w, (z) -iSc _ (z-T)
i o

• (47)

Perhaps the most interesting feature of Eq. 47 is that its

first equality does not hold for the case of pure diffraction,

touted above for its sDatial reciprocity z_ when U=0. Eq. 47 is

true because the freestream U has the local (steady) effect of

turning a generating element of thickness flow, Aw,, into an

axial ring doublet -- recall the 8/8_ derivative on the right

side of Eq. 33. Figs. 3a,b summarize the mathematical and

physical details behind Eq. 47.

The context of Eq. 47 vis-a-vis past work is, as far as the

author knows, as follows. The effective conversion of a monopole

source into an axial dipole is a well-known consequence of having

a freestream U; see, for example, Amiet's comments at the top of

Ref. 3a's p. 8. That conversion suggested here the possibility

of the £ype of reciprocity displayed by Eq. 47, because the

fore/aft oddness of the new "thickness dipole" is similar to that

of the upwash of a bound vortex in the lifting problem. The

multiplicative constant of proportionality remained to be worked

out. Eq. 47 has established that this constant is simply -i, a
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number checked independently and semi-graphically in Figs. 3a,b.

C The Coupled Pair of Sinqular Inteqral Equations

C.I Statement of the Boundary Conditions for r=a -, a÷, and

Oualitative Siqn Check amonqst the Terms of the Liftinq

and Nonliftinq Problems

The coupled integral equations that describe the fluid

dynamics of the cowl as a diffractive/dissipative two-sided

object result from the enforcement of boundary conditions on its

inner and outer surfaces. These conditions, which apply over

-L/2<z<L/2• are

r=a + : _ @_nc = Wv-t+ _h , (4sa)

r=a - :

• (48b)

• (48c)

Eq. 48a states that the total fluid particle velocity normal

to the cowl's outer rigid wall must vanish there (flow tangency).

Symbol _±,c denotes the contribution of the incident field. Eqs.

48b and c, which are equivalent, introduce the axially and

frequency-variable dynamics of the line_ through its locally

reacting impedance Z11n.r(Z;_ )• Eq. 48c is considerably simpler to

implement than Eq. 48b. It combines Eqs. 48a and b as follows:

Bringing _i,¢ to the right side of Eq. 48a, one first notes

that the added subfield _i,c + _, is continuous across r=a

because its two constituents are individually continuous

everywhere: for them the implied radial argument r=a ÷ could just

as well be r=a-. Thus Eq. 48a also declares that

- inc. -. _ _ - thw, (a _ + , (a-) = - w, (a÷), which upon substitution in the left

side of Eq. 48b generates the left side of Eq. 48c, because

- th Z) - th - total - total - total. ÷Wv (a-, -wv (a+,z) = w, (a-,z) = w, (a-,z)-w, (a ,z) -

-Aw,(z), this last equality following from the definition of AQ,

in Eqs. 32 and 33. The quantity wvt°ta1(a-,z)-w,t°tal(a÷,z) becomes

w,--w,_ for short in Fig. 4a, which summarizes part of the sign-

check argument that now follows.

_Eqs. 48b,c enforce continuity of normal velocity between the

fluid and the liner-material particles. Nayfeh et al. (AIAA J.,

13(2)• 1975, pp. 130-153; see p. 135) have discussed the flow

conditions under which these statements hold, and when they

should be replaced with corresponding expressions for the

continuity of particle displacement.
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The first term on the right sides of each of Eqs. 44a and 46
has isolated the local delta-function behavior imparted by the
respective kernel. The results are the terms Aw (z)/2 and
-Apv(z)/2 lying outside the z integrations. These separated
terms are useful for checking the relative signs of the several
parts of Eqs. 48a and c, and for interpreting these parts
physically.

- inc

Eq. 48a strikes a balance between -w v and AQv/2 + .... and
- Inc -+

so implies that -w, - (w, - w-,)/2 = .... The effective

thickness velocity -wv + is thus in line with that of the incident

field, which is as should be (Fig. 4a). Quantity w- subtracts

from that sum [wv+ is zero in the present study because the

cowl's outer surface is taken to be hard].

Similarly, bringing in the first term on the right side of

Eq. 46 into Eq. 48c's right side leads to a balance between
InC _ - n

-ZIi,.=AQv (=Z1in.=w") and the difference p, -ap,/z (Fig. 4b). This

= inc+ - + 2,second term becomes Pv p,-/2 - p, / so that the lower lifting

pressure p,- pushes in the direction of _i.¢, which is again as
should be.

In the way of final remark, note that Eqs. 48b,c are valid

whether Z11..r refers to a passive or an active liner. The

development will specialize itself now to the former type. This

will result in integral-equation drivers that are in terms only

of propeller-incident field quantities. An active liner would

obviously contribute to these known right-hand sides: Aw, would
,, m n_ive

then be the prescribed inward velocity -w, (a ,z)" of the

active source at z backed by the cowl's outer structure.

Z1in.r(Z;_ ) would then stand for the known internal impedance of

that particular active source, and the sum of the second and

third terms on the right sides of Eqs. 48b,c would then be

interpreted as the radiation loading bearing down on that source.

C.2 The Liner Model

The formulation limits itself here to modeling liners that

are axisymmetric at every axial station z along the cowl's

interior, although properties may vary with axial distance z.

The present study considers a single axisymmetric band of axial

extent L_Mr with its midpoint at z=z,id (Fig. 5a). An important

objective is to determine the sensitivity of the scattered-plus-

incident acoustic field to the position of this band within the

cowl.
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The liner material will be locally reacting and its impedance

signature will be that of a blocked acoustic layer of thickness

hlin.r and complex compressional wave speed clin.r (the blocking is

provided by the cowl's "outer" wall, which is of infinite

impedance, see Fig. 5b). The dissipation mechanism will be a

material loss factor _ associated with this compressional speed.

Normalized by the medium's characteristic impedance pc, Z11,.r is

Zline r (_) ; z)

pc =/cot( (_ hliner 1
Cliner /

=icotl 15 _ 1B_ RPM_oi:e
; IZ-Z_'zDI < Lliner (49)

2

The second equality has fixed the real part of the liner's

compressional wave speed to make impedance ZI,..r pass through its

first null, i.e., through its first thickness resonance, at a

value of frequency _ corresponding to a propeller RPM of choice,

RPMcholc.. B is the number of blades in the propeller. Together

with RPMchoi_., B obviously determines the blade-passage frequency
of choice. The discussion will describe below a tonal model for

the incident field adopted for the current study.

C.3 Final Nondimensional Form for the Coupl_d System of Sinqu!ar

Inteqral Equations

Sections II.A and B have generated the different parts of

the coupled lifting and nonlifting problems for a lined ring wing

in aerodynamically noncompact unsteady subsonic flow. This

section puts those parts together. First, however, it

nondimensionalizes every distance and wavenumber by the cowl's

halfchord L/2. The cowl's left and right ends will now be at z=

-i, +i, as shown between parentheses in Fig. 5a. A new symbol,

"k", will stand for the ring wing's reduced frequency eL/2U

following standard nomenclature. Radius "a" will now be

nondimensional, and the radial wavenumber of Eq. 8 will be given

by

(50)

Contour C now traces the path shown in Fig. 2d.

The first of the two coupled integral equations applies to
the r=a + outer surface of the cowl. It is
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I "
_,In_(z)= ! A_, (z)

U 2 U + _ _"' (z-7) u2
-I P

+ d_ (z-7) u
-1

(51a)

The second equation comes from the boundary condition along

r=a :

i_, 1_=(z) A _,(z)
II : - Maliner(_; z) -

U 2 UP

M (_;z) A_, (z)
_ linez _ U2

1

-M_inor(_; z) f_K:,_(Z_7) .A_" (7)
-i PU2

1

+H_1_,r (_;z) _ _ KSh,th(Z_7) A_U(7)
-i

• (51b)

Eq. 51b has divided Eq. 48c throughout by the liner impedance

Z1±..r, and has defined the normalized liner admittance a as

a (_;z) = pc . (52)
zn.o_(_;z)

The reason for Eq. 52 is numerical stability: Along the

unlined parts of the cowl's interior, where the compliance a(z)

is zero, the coefficients of Eq. 51b that contain it simply

contribute zero. The remaining term, which appears first on the

right side of the equation, is then balanced by nothing and

therefore states that the thickness solution AQ,(z) is

identically zero over these unlined z's -- a sanity check. Not

dividing throughout by Z_i..= leads to the same conclusion but

requires the practical use of artificially large numbers to

account for the arbitrarily large impedance of the unlined

segments.

Note finally that Eq. 51b collapses to the statement

AQ (z)_0 if there are no lined segments at all along the cowl's
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interior. Eq. 51a then turns into an old-fashioned lifting
problem unencumbered by the one-sided nonlifting effects of the
liner:

_i.:(z) _ £,_ A/5,(3)

-1 P

Kernels Kvn'_ Kv_'th th,t_, , and K, in Eqs. 51a,b are

-i ____2 (Z-Y)

_"'(z_) = _9_. e
2_ z-z

+ e fa_e__(z__) y2aH,(ya) Jv(ya) _/__ (53a)

4 c _+ p--k2 = '

IQe,_(z--_) =- e-i_ ('-_
fd_e-f_(z-_)[iyaHlv(ya) Jv(Ya) + I] , (53b)

4 c

_ 1 e-i_ (z-Y)

K _h,th(z__)-- 2_p " _-_

-i___I(z-T)

+ e fd_e_n_(z__)[Hv(Ya)jv(Ta)(]_a+ k__2)+__!_i 7<__J]. (53c)4 c _

The division of the pressure jump by pU 2 in Eq. 51a, and

likewise of all velocities by the freestream U, has prompted a

redefinition of the kernel [ J,t in Eq. 19b £o be now without the

i/pU factor included there.
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D Form of the Solution

The solution technique will be conventional: A pair of series

that introduce unknown coefficients _ and B n for the lifting and

nonlifting problems, respectively:

P U2 =A° _ + _m-1_AmUm(z) ' (54a)

(z) N
u - m. rn(zl (s4b)

n-0

Eq. 54a is equivalent to Ref. ll's expansion on p. 230. Its

first term accounts for the square-root singularity of the

aeroacoustic loading at the cowl's assumed-sharp leading edge

z=-l. The numerator of this factor brings the diffraction

loading down to zero at the trailing edge z=+l and thus simulates

a Kutta condition there. The sum part of Eq. 54a is in terms of

Chebyshev polynomials U. of the second kind. Its square root-

factor also satisfies the Kutta condition. The T. functions in

Eq. 54b are Chebyshev polynomials of the first kind.

The relationship of the solution prescribed in Eq. 54a (Ref.

4f's Eq. 25), to that used in Ref. 4a for the pure diffraction

problem in the absence of a freestream, is as follows: The

scatterer's bound vorticity Au(z) blows up as (z+l) -I/2 for z_-I

whether or not a freestream is present. Accordingly, the

discontinuity in the velocity potential @, which by definition is

obtainable from the integration of Au with respect to z, vanishes

as (z+l) In for z_-I regardless of the presence or absence of a

meanflow U (see, for example, Noble's *v p. 74 for U=0, and Amiet '_

for the case with U).

The difference of U=O versus U_0 is obviously in the

diffraction loading Ap. This is given by -p@[A@]/@t = i_pA@ for

the flowless case ("Bernoulli's equation" for acoustics), which,

by the above arguments, vanishes at any of the scatterer's thin

edges. Ref. 4a, which dealt with the flowless version of the

present problem, accordingly skipped the first term on the right

of Eq. 54a and began the remaining sum with m=0. The solution

thus resembled that usually implemented for subsonic flow along

the spanwise direction in thin-wing theory (see, for example,

Ref. 14's Eq. 7-96, and recall the comments made above regarding

the analogy between spanwise aerodynamics and diffraction theory,
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in item #3 of "Yet Another Benchmark Check: Unification with the

Theory of Pure Diffraction").

The situation changes radically when there is a freestream.

Bernoulli's equation then states that Ap ffiip_A_ - pUAu = - pUAu

for z + -i, and Ap is therefore automatically singular at those

edges recognized to be the geometry's leading edges: see

Adamczyk12's Eq. 37 for the pressure field along the semi-

infinite chord of a "leading-edge" airfoil, and Ref. 4g's Eq. 14

for its analytic continuation by the present author to any

nearfield point. This second result is in closed form, just as

Adamczyk's had been, despite its generality of field position.

Unlike in the problem of pure diffraction just discussed

(U=0), the process of bringing Ap down to zero at any other edge

exposed to the meanflow now requires human intervention. It is

worth restating that the Kutta condition and its implication of a

vanishing trailing-edge load are viscous effects that must be

injected into potential theory by hand.

A recent report by Amiet 3a has argued independently for the

singular behavior of the first term on the right side of Eq. 54a

above, which had also been postulated in Eq. 25 of Ref. 4f and

had been based then on the above simple observations.

The expansions in Eqs. 54a,b, once substituted in Eqs.

51a,b, generate a number of integrals familiar to workers in

aerodynamics, e.g.,

+-II (55a)

and

f d_v/_--z 2 Um(-z) e = = (re+l) i'.
-1 _ + kM____2

(55b)

The last step is to multiply Eqs. 51a,b by convenient

functions containing the same indices as Eqs. 54a,b, i.e., m and
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n, and to integrate again from -i to +I, this time with respect
to the control variable z. The result is an M+N+2 x M+N+2 system
of equations to be solved for the unknown coefficients Am and B..

E Model of the Incident Field

The aeroacoustic field that insonifies the cowl from within

will come here from a propeller, or fan, with B thin blades

cutting through a "general" inhomogeneity in the axial meanflow:

u(#°,r'). Asterisked variables will describe the inhomogeneity

spatially on the plane of this fan stage, which accordingly will
be at axial station z .

Such an inhomogeneity could be due, for example, to

(i) the wake-momentum deficit of upstream vanes or supporting

struts (neither of which exists for the configuration of Fig. la,

although the statement could then apply to the indicated

downstream structural member, which is in the wake of the

upstream rotating blades);

or to

(2) a cross flow when the cowl is at an angle of attack while

climbing or turning -- either type of maneuver would cause the

cowl's inlet region to contribute a relatively smooth inflow

inhomogeneity by effectively shielding sectors of the propeller

from the incoming flow (recall the comments made after Eq. 27b).

The model of the nonuniform inflow will be contained in a

simple Gaussian curve of effective width "A-*" that puts the

maximum momentum deficit u at an absolute circumferential

position _ (three parameters, see Fig. 6a). Its discrete

circumferential spectrum of amplitudes u.(r') is

2z 2_

Un (r°, = f 2d_e-in"u(*°,r" = _ f d2_-_exp[-in*'-A(4)°-*' _-]
o o

• (56)

This implies a spectrum of gusts with fronts parallel to the

unswept blades, which sense a chordwise wavenumber n/r ° at radial

station r" (Fig. 6b).
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The blades' chord 6 will be constant from hub radius Rh to

the effective tip at r'=R t. Moreover, all of the airfoil

elements making them up will lay flat on their nominal plane of

rotation at the axial station z=z" (no pitch, no rake). The

model's unsteady aerodynamics will be those of strip theory in

the aeroacoustically compact regime:

(i) Each blade element, of local spanwise width dr*, will sense

an airload due to the chopping process in a state of isolation

from the rest of the airfoil segments on the same blade, and

(2) The aerodynamic transfer function T. defined below in Eq.

58 will not include compressibility or high-frequency effects: it
will be the Sears function evaluated for "wavenumber" n/r*. The

units of the product u.T_ below are force/running length.

The aeroacoustic field along r=a radiated by the thrust-

dipole field from "B" such blades is

- -ims_t-i_c_2 (z-z')_ e_i(ms_,)_B EpinC (a ,_ ,z, t) e
4 _ m--N n--N

Rt

.fdr'un(r')Tn(n/r')_cd_(_+mB_LMle-1_('-z')_(1) (¥ma) J__n(Tmr*) (57a).. pU L )

and the corresponding incident fluid particle velocities are

" -/msQ c-i mBQLM (z-z')
wi"CCa,¢,z, t) = i___BB_ e 2cp" b e-it"s-n)*

U 4_rm--- n---

"_ ,)pU2L [ _ + mB_LM I
.fdr" u,,(r .fd .,2CP=

mB_L |

(57b)

The cowl's halfchord L/2 continues to normalize all length

variables in Eqs. 57a,b; e.g., r°, blade chord 6, and blade

length Rt-R h are all nondimensional. _ is the fan's rotational

speed and the first sum on the right side of both equations

accounts for the problem's tonal harmonics m. E.g., mB_ are the

blade-passage frequency (m=l) and its harmonics (m=2,3,...).
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Discrete frequency mB_ thus replaces the symbol _ in all of

the earlier equations. For example, radial wavenumber 7 becomes

7. in all of the _ transforms, still given by Eq. 50 but with

reduced frequency k now given by "_"=mB_L/2U.

Everything inside the m sum except for the exp[-imB_t]

factor becomes p in Eq. 57a: the incident pressure field's

frequency spectrum (recall the purpose of the tilde over all of

the dependent variables in the foregoing analysis). And the

effective circumferential modes of this driving acoustic field

are mB-n, which replaces symbol v throughout the above.

The product u.T n is

u, (r') T n (nlr')

p U2L
= 5 _ d_" exp[-in_" -A (_" -_) 2] , (58)

where S is the Sears function, conveniently approximated by

S( nc I- exp [-_7r, i.- 2 ii+_nc/r*) (59)

(Quantity nc/2r" is "at" in Goldstein's nomenclature n, see the

discussion surrounding his Eq. 3.64).

Parameter J in the denominator of the coefficient on the

right side of Eq. 58 is short for the propeller's advance ratio

RU/[_.(RtL/2)] (remember that _ has been normalized by the ring

wing's halfchord L/2). This use of J is somewhat misleading

because it suggests that the blades are pitched when in fact they

are not: their chords lie flat on the plane of rotation, as

stated earlier. J comes about solely from the normalization by

pU2L on the left side of Eq. 58.

As a weak check on the meaning of Eqs. 56 through 59,

consider the circumferential average of the nonuniformity's

upwash on the plane of rotation, given by the n=0 term of Eq. 56.

The unsteady chopping mechanism should then go away and the only

noise given off by the modelled fan stage should be of the Gutin
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type. And putting n=0 on the right sides of Eqs. 57a,b in fact

generates just that kind of acoustic field, with subscript mB-n

on the Bessel functions collapsing to mB.

For n=0 the Sears coefficient of lift as given by Eq. 59

becomes unity, which is again as should be, and Eq. 58

accordingly provides the incremental steady running (strip) lift

experienced by the blades as they cut through the @" average of

the signature in Fig. 6a. This lift would be "incremental"

because it would obviously be additional to what real blades

would feel by virtue of their angle-of-attack distribution.

It is also interesting to note that the much higher Fourier

mode n=mB (v=0) of the inflow inhomogeneity is special, because

it, and only it, will determine the incident and diffracted

farfields along the cowl's axis r=0. The Apw 0 part of the cowl's

virtual sources does not contribute even then: the dipoles' nodal

planes coincide with the cowl's axis in the farfield. The liner

will thus be responsible for all on-axis scattering.

Regarding the incident field by itself, one could fairly

call v=0 the propeller's "impulsive" chopping mode, because if

each of the blades cut the nonuniformity in rectilinear motion

(i.e., nonperiodically) the response would, in fact, be nonzero
on axis. Goldstein n discusses other interesting aspects of the

mB-n index of the above equations on p. 165 of his book.

F The FarField Analys_s

There are two kinds of farfields that are of interest to the

present research program. Each applies to both the incident and

the scattered component:

(I) The field produced by the ducted propulsor along the

aircraft cabin's exterior wall (the relevant frequencies are

high enough to put these points in the acoustic farfield;

see Fig. 7a); and

(2) Acoustic radiation as heard by someone on the ground, where

all real and virtual sources appear to be flying by (Fig.

75).

Recent interest seems to be leaning increasingly toward the

second of the above: the community noise problem. The current

project considers both. Their analyses follow standard

asymptotic steps which need not be repeated here.
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First for the fan's incident radiated field: As seen from the

aircraft's reference frame (item i above), this is

;5, i#_ (Ro-" _, Oo)

kM. __ kM 2 Z

pU 2 e T_°_ _-7
Ro

[7 in0"-,<°"
Rt SIncl kM *sin0o) Oa)

The corresponding ground-perceived incident signal is

;3,,i#_ (ao'', Oo)

" /_-_l
-i l_McosOo _ c /

pU2 e
Ro

"[7 d¢)"e_p {-x_4)'-A (,_'-))'i]

(60b)

Here v continues to be mB-n, as earlier explained.

In the aircraft-based result of Eq. 60a, the nondimensional

range R o and the directivity angle 8o are respectively defined by

(Fig. 7a):

Ro=q'-(z/_)2 + r 2 ; Oo=- arctan( _r)z " (61a,b)

And on the ground frame these same variables stand for (Fig. 7b)
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r) (62a b)R o=_z 2 + r 2 ; 8o=-arctan z

The range Ro that appears in the retarded time t-Ro/C in the

exponential in the denominator of Eq. 60b's left side is the

dimensional version of Ro, i.e., Ro=RoL/2. The analysis for Eq.

60b began by including the problem's exp(-i_t) temporal factor in
the calculated function. This becomes exp(-i_t/[l-Mcoseo]),

which displays the classically familiar Doppler shift l-McosSo.

This factor squared also appears in the denominator on the right

side of Eq. 60b. It amplifies the solution in the upstream

direction and reduces it in the downstream direction, consistent

with the similar behavior found by Goldstein for jet noise (see,

for example, Ref. II' s Eq. 2-29, where the power of l-McosSo is

"-5" rather than "-2").

Recall now that the propeller's sources of aerodynamic sound

are thrust dipoles only (the blades lie flat on their plane of

rotation, and there are no "drag" dipoles). One's first

inclination might therefore be to say that the incident acoustic

field should be zero on the 8o=_/2 plane of the propeller

regardless of reference frame. This actually occurs for the

ground frame of reference: the cos0 o on the third line of Eq. 60b
is zero there. But the aircraft-frame result in Eq. 60a instead

displays a corresponding null at 8o=COS-1(-M), which is z_/2. The

propeller's nodal plane gets washed downstream by that much.

Note that Eqs. 60a and b merge for M_0, as they must. The

product "kM" then becomes eL/2c, the normalized acoustic

wavenumber.

As for the scattered field radiated by the virtual source

distributions Ap,(z) and Aw,(z), both of which are known by now,

this is, in the aircraft's reference frame of Fig. 7a,
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p/(Ro-_, 0o) +D,_(go-'_,Oo)

kMR -i h'_r_'z

eiT o -_
pU 2

a o

I,,,s,.nOo..,,,,,,sine,,)1.,iM /

-_ P U 2

1

-1

Ae, (7)
U

,_(_..oo,,,,,)

(63a)

Ground-based listeners perceive the same diffracted signal as

(Fig. 7b)

p,' (Ro--,_, Oo) + _,_ (Ro--,®, eo)

-,,_,:o..o(0--_)
pU2 e

Ro

(1 -McOSeo) _'[ i -Mcoseo) -_ dE2 p U 2

+ 1 [ kaMsinOo_ f A_v (_)

-1

i k_Mc°s6°

1 -Mcos6 o
e

(63b)

The sum of Eqs. 60a and 63a gives the total pressure field

as a function of the cowl elevation angle 8o, for observers in an

aircraft, while the sum of Eqs. 60b and 63b yields the

corresponding quantity relevant to community noise studies.
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IV REPRESENTATIVE PREDICTIONS OF THE MODEL

A Selected Values for the Input Parameters

Ref. 18 lists operational parameters for a prototype of a

modern ducted propulsor. The sample calculations about to be

discussed will apply, alter somewhat, and supplement these values

as needed to complete the input set. The flight Mach number M is
.8.

Cowl parameters: length L = 6 feet
radius a = 2.5 feet

position of propeller station z" = +L/10

length of liner patch Ll±,.r = .6 L

Propeller parameters: number of blades B = 18

hub radius Rh = .25 a

tip radius Rt = .70 a

average blade chord 6 = .I0 (Rt-Rh)
RPM = i000

Inflow nonuniformity parameters (see Fig. 6a here):

6/U = .2

_=0

A = (2/_)21og.i0

The indicated value of "A" causes the Gaussian in Fig. 6a to

reach its 10-percent-of-maximum mark at #*=_ ± ,/2 (the maximum

occurs at #=_ by design). The chosen propeller rotational speed

of 1000 RPM generates a blade-passage frequency of 300 Hz. It is

roughly one third that of the actual specification in Ref. 18.

And yet, 1000 RPM already implies relatively large values for the

noncompactness parameters of the cowl as a ring wing. E.g., the

acoustic wavenumber normalized by the cowl's radius is _a/c=4.28

(s=B_, the blade-passage frequency). The aerodynamically

relevant form of this quantity, _a/(_c), is 7.11. As for the

cowl's length, or chord, its reduced frequency "k" is 12.86, and
_L/c is 10.29.

B Discussion of Numerical Results

Fig. 8a plots the total farfield v-modal pressure, in the

aircraft's reference frame, for three possible layouts of the

cowl's interior liner. The value of v is zero, correspondingto

the n=mB th circumferential mode of the inflow inhomogeneity in

Fig. 6a (recall the text after Eq. 59 regarding the significance
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of this null value). The solid curve belongs to a ring liner

patch beginning just after the cowl's leading edge. The dash

curve is for the same patch centered at the cowl's z=0 middle

(i.e., with z.id=0 in Eq. 49). The remaining dot curve is for a

ring patch that almost reaches the cowl's trailing edge.

The patch length L1i,.r displayed in each of the insert

sketches in Fig. 8a is .6L, as per the above list. RPMchoic. in

Eq. 49 is 2000, so that the layer in Fig. 5b is stiffness-

controlled at the operating rotational speed of 1000 RPM. The

loss factor _ does not play a strong role at this frequency (its

actual value was .05 for Fig. 8a).

Each of the three curves in Fig. 8a shows

201og10(Ro(total pressure)/pU21 as given by the sum of Eqs. 60a

and 63a. The sense of the directivity angle 8o follows from Fig.

7a. The differences in the 8o=0 pressures among the three plots

are attributable solely to differences in the radiative

performance of the thickness solution among the three liner cases

investigated (recall that each coupled lifting solution, Ap,,

cannot affect on-axis levels directly because its effective

dipoles are radial). The same is true of the 8o=180 ° downstream

direction. The message of the figure is that the spatial layout

of a finite cowl's lined patches can have a significant impact on

most of its radiated rays, even when these patches are not tuned

for maximum energy absorption.

Fig. 8b removes the liner (note the cowl sketch along the

bottom right of the picture), and compares the total to the

incident pressure. The sector marked "ILZ0" contains those field

positions where the diffracting cowl has a beneficial shielding

effect. "IL" stands for "insertion loss", following standard

terminology. I.e., "insertion loss" denotes here the loss of

field pressure due to the "insertion", or introduction, of the

cowl.

There are two such ILa0 zones in Fig. 8b. The larger one

agrees very roughly with the cowl's geometric shadow by extending

from about 8°=50 ° to ii0 °. Its largest IL values are only a few

dB, however. The narrower rearward zone, which is off the cowl's

shadow as defined neglecting again the effects of convection U,

is the result of a subtle destruction of the incident field by

the lifting distribution over the cowl. Incidentally, the total

pressures at 8o=0 , 180 ° match those of the incident field (i.e. ,

the two plotted curves merge), as a result of the absence of a

liner and of its associated monopoles. The incident field has a

null at the propeller's convected nodal plane at 8o=143 °
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=cos (-M)=cos-I(-.8), as anticipated above after Eqs. 62a,b. The

insertion loss is doomed to be negative there: the total field is

locally due strictly to (undesirable) diffraction by the cowl.

Fig. 8c is a composite of the positive insertion-loss zones

from Figs. 8a and b. The solid curve is the same incident-field

pattern from Fig. 8b. The purpose of the new figure is to show

the potential noise-reduction effect of the investigated ensemble

of liner configurations coupled to the mechanism of edge

diffraction at the cowl's two ends. The best compound results

occur approximately over the cowl's shadow, which appears to be

further accentuated by the liner, or liners, relative to that

cast by the unlined case of Fig. 8b.

Figs. 8a-c have addressed the aircraft reference frame in

Fig. 7a. Figs. 9a-c now show results corresponding to the ground

frame of reference in Fig. 7b. Fig. 9a uses the same three lined

cases of Fig. 8a. The curves are again for the total normalized

pressure farfield, this time given by the sum of Eqs. 60b and

63b. E.g., Fig. 9b is Fig. 9a's ground-reference counterpart.

The solid curve contains again the incident farfield, which

vanishes at 8o=90 ° as demanded by the cos8 o factor on the third

line of Eq. 60b. The broken curve is for the total farfield for

the unlined cowl. The large detrimental bulge between 60 ° and

70 ° in Figs. 9a,b, which incidentally does not show up elsewhere

in Figs. 8a,b, remains to be resolved. The larger of the two

zones of positive insertion loss is now somewhat narrower and

more forward-directive than in Fig. 8b. The rearward ILZ0 zone,

on the other hand, widens relative to that in Fig. 8b. Fig. 9c

shows the union of the IL_0 sectors of Figs. 9a,b.

A few comments are in order regarding the nulls of the

incident fields in Figs. 8b and 9b. These are the result of

having used only thrust dipoles to describe the unsteady

aerodynamics of the propeller/inflow-inhomogeneity chopping

process. The present model for the incident field neglected

blade-thickness effects on blade radiation (monopole in nature),

blade pitch, or more generally, blade twist. It has also not

accounted for "drag" dipoles for the blade sections. Any one of

these omissions, once included, would remove the nodal planes of

the solid curves in Figs. 8b,c and 9b,c, which in some sense are

therefore artifacts of the propeller model chosen here to test or

drive the cowl theory.

The 80=90 ° null of Fig. 9b's community-noise calculation

represents a particular strain on the present diffraction study

because it causes the cowl's insertion loss always to be negative
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near this direction. The cowl's shielding performance should be
better for real-life incident fields which typically reach their
maximum, not minimum, near 8°=90° (see Ref. 19).

Figs. 8a-c and 9a-c have presented calculations for the n--mB
(v=0) circumferential mode of the inflow inhomogeneity. Figs.
10a,b now show ground-frame predictions for n--mB+5, so that
Iv[=5. One objective of these results is simply to drive home

the point that the new code for the cowl diffractor can tackle a

general value of v and can thus map the radiation in three

dimensions by weighing coherently each v pattern by a factor

exp(-iv@). Another purpose of Figs. 10a,b is to explore the
effects of a tuned liner having a high loss factor: RPMcho±c. in

Eq. 49 is now 1028 and so essentially matches the operational

RPM, which remains at 1000, The loss factor _ is 1 (one). The

layer in Fig. 5b is now resistance-controlled.

Fig. 10a compares the incident (the solid curve) to the

total farfield for the liner patch whose left end is just inside

the cowl's inlet edge (see insert). Fig. 10b displays the other

two patch cases analyzed in earlier figures. The new high-loss
factor results contain fewer undesirable IL_0 zones relative to

the reactive liners discussed above. The extremely low levels of

these ILS0 zones now make the cowl's performance essentially all

good. These Iv]=5 results are representative of predictions in

which the shrouding system was found to play an almost global

positive role in noise reduction.

V CONCLUSIONS AND RECOMMENDATIONS

A Conclusions

i. The present study has generated a new formulation, in terms

of boundary values only, for the coupled problems of cowl

diffraction and liner dissipation of propeller noise at high

subsonic flight speeds. A new computer code based on that theory
now exists. The _0 limit of the analysis can already predict

the steady but nonuniform interference flows which a cowl at an

angle of attack would induce on its internal propulsion system

(thereby generating additional propeller noise). The new code

predicts cowl diffraction both for aircraft-cabin and ground-
based listeners.

2. The new formulation is valid both for passive and for active

liners, although the Phase I study has addressed only the former

kind.

3. The theory uses freefield propeller nearfield quantities to
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drive its diffraction system equations. This requires no

sacrifice in rigor. The right-hand side of the pair of singular

integral equations in Eqs. 51a,b could be saved, so that only

their freefield drivers need be replaced from propeller case to

case (for a specific frequency of interest).

4. The calculations produced here to demonstrate the new theory

suggest that a short cowl having passive lined segments should

provide moderate shielding of propeller noise (see the shaded

parts of Fig. 8c, for example). These passive-liner results

imply that the significantly better performance that one would

expect of a smart liner should be within the reach of present

technology, at least in terms of power requirements.

B Recommendations

The recommendations of the present Phase I study are almost

self-suggesting given the above conclusions:

I. Turn the new diffraction software into a user-friendly code

that will allow for the "fast" testing of propellers in terms of

the freefield nearfields with which they would insonify a

candidate design for the shrouding cowl. Apply the new theory to

realistic and relevant propulsion systems. Adapt existing

predictors of freefield propeller noise to provide the input

quantities needed in the new cowl theory. E.g., make part of

their output the directional derivative of the pressure nearfield

normal to what will later correspond to the cowl's surface, in
- InC

order to yield w v for use in Eq. 51a.

2. Include in a future model a number of features missing from
the current version. These include

(a) a formal coupling of the existing cowl-only theory to a

boundary-element analysis of the axisymmetric engine core

in Fig. la (see the author's Ref. 13b and Ref. 13a by Wong,

for one such analysis for an unshrouded, but otherwise

general axisymmetric body in a still acoustic medium);

(b) possible changes in the liner model and its subroutine;

(c) the addition of camber/taper and static thickness to the

cowl's geometry, which is now straight and thin.

3. Develop and apply an active-liner control algorithm to

further reduce acoustic radiation from the ducted system.
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Fig. la [From Refs. 1 and 2]: Typical cowl design for the new

generation of advanced ducted fans. The picture lists

issues of interest to NASA. The present study addresses
some of the acoustics items on the list.
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Fiq. !b Current idealization of the geometry in Fig. la. The

dash-lined engine core is acoustically transparent. The cowl's

radius is constant and equal to "a". Its wall's thickness is

infinitesimal for the purposes of prescribing boundary conditions

on its inner and outer surfaces. The outer surface is rigid, as

indicated at the top of the sketch. The inner surface contains

an axisymmetric liner with properties that may vary with axial

coordinate z. The example liner shown contains three distinct

ring patches with as many frequency-dependent impedances, ZI, Z2,

and Zs. The remaining unlined parts of the cowl's interior have

an infinite impedance.
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C

Fig. 2a The three basic singularities of inviscid aeroacoustics.

The branch points generate convected sound signals and

the pole produces a shed/trailed vortex system. The

implied temporal factor is exp(-i_t). This is the same

picture as Fig. 2 of the author's Ref. 4c, where each

wavenumber appears normalized by the relevant halfchord

("b" there, L/2 here), and where the harmonic factor is

exp(+i_t). See also Fig. 2d below.

I

u c

C

Fig. 2b Convergence upon the R=0 origin of the three singular

points of Fig. 2a, for the special case of steady aero-

dynamics, _=0.
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C

Fig. 2c Shift of the three singular points of Fig. 2a for the

special case of pure diffraction, U=0. Factor _ becomes

1 and the two branch points accordingly move toward

±_/_. The wake pole at -(_/U)/_ 2 falls out to R=-_ and

out of the problem.

f ?
C

Fig. 2d Nondimensional version of Fig. 2a. The ring wing's
halfchord L/2 has normalized the transform wavenumber

R. Symbol k is the cowl's reduced frequency, eL/2U.

This figure is the exp(-iet) version of Ref. 4c's Fig.

2, where the branch point "M" appears generalized to

include oblique gusts at angle A. Wavenumber _ thus

collapses to the kM/_ 2 wavenumber indicated above for
A--0.
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Fig. 3a Graphical confirmation of Eq. 47. The radial momentum

equation changes a wall monopole locally into an axial doublet.

The monopole's original strength is AwdS, where dS is an

elemental area patch on the cowl's midsurface. The velocity jump

Aw is taken to be positive. R on the upper sketch is the three-
dimensional distance between the source at axial position _ and

the receiver at nearby z. The pressure for z<z is negative,

whereas p(z>z)>0.

I=a

npd_: [_" -p-] d_ > o

ml_mmm
w_mmmmmm

_(z<_) < o

-Aa=- (O*-D-)

_p_ i <0 for z<-z,

> 0 for z > -z

Fig. 3b Bernoulli's equation similarly turns a dipole of
positive strength Ap (negative lift) into a bound vortex with

counterclockwise circulation -_u. The vortex induces a negative

downwash for z<z and a positive radial flow for z>z. These signs

are opposite those for the pressures in Fig. 3a's lower sketch,

and thereby account for the "-" sign within brackets in the first

term in Eq. 47.
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Fig. 4a Sketch in support of the first of the two sign-check

arguments discussed after Eq. 48c. The r=a
local contribution of the thickness problem is an inward

velocity opposing the incident field (see also Fig. 3a's

lower sketch). A_=--_- because here the cowl's outer

wall at r=a + is hard.

r=a : -

o

Disc+ 15--f>+ +
""

A_ =_ + -_- = dipol e strength

_inc

• = net pressure

pushing outward on r=a

Fig. 4b Second of the two sign checks taken up after Eq. 48c.

The inboard scattered pressure_p" adds to that of
incident field acting over r=a , as it should.
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Z = ZMI D

Z=0
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!

Z
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z=+L/2
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\

Clinez = Re [clia, r] _/i - i

I' , I i
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I I I I

I I I I

I I I

Zbacking= co

(a)

(b)

Fiqs. _a,b (a) Geometric parameters of the liner model. The

lined segment extends from z=z_a-L11,.r/2 to Z_d+L1i..r/2. The

picture also shows the effect of the eventual normalization of

all spatial variables by the halflength L/2: The cowl's left end

will then be at the nondimensional axial position z=-l, etc.

(b) Blow-up of the cropping circle in (a). The liner is a

locally reacting acoustic layer with loss factor _ and

compressional wave speed ci,,or. Eqs. 48b,c ignore the actual

liner depth hli..r in prescribing the inboard boundary condition on

r=a" rather than on r=a-hli., r.
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Fig. 6a Model of a stationary inflow nonuniformity being chopped

by the fan. The Gaussian curve contains three parameters: (i)

the absolute angular position $ on the propeller plane for, (2)

the maximum momentum deficit 6/U, (3) which smooths out in the #_

direction at the rate A -I (see Eq. 56). The nonuniformity

depicted affects all r ° blade radial stations between hub (Rh)

and tip (Rt).

_gust = _ _

n

I , I
I ,i

i

k

i

Fig. 6b Eq. 56 breaks up the inflow nonuniformity of Fig. 6a

into a discrete "n" spectrum of circumferential gusts of

wavelength 2nr'/n. The blades lie flat on their plane of

rotation, are unswept and of constant chord _. The gusts'

"wavefronts" are parallel to the blades' leading edges.
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U _. __--_c+U

-- -- .....-- -- /13

Fiq. 7a Definition of range Ro and of directivity angle 8o for
the calculation of the acoustic farfield reaching the cabin's

outer wall. Sound must travel through a medium moving at Mach

number +M in this reference frame. Signals accordingly propagate

in the downstream direction at speed c+U relative to the

aircraft. Their wavelength stretches by the factor I+M (Eq. 25).

Waves travelling upstream do so at speed c-U, and their

wavelength compresses by 1-M.

r

_

Fiq. 7b Corresponding definitions for the farfield calculation

for ground-based listeners. Now all real and virtual sources are

in motion with speed -U, the medium is still, and all acoustic

signals travel at speed c relative to all observation points.

Upstream wavelengths remain shortened due to the Doppler effect

(see sketch). Downstream signals stretch out for the same
reason.
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Z=O

z=O

Fig. 8a Predictions of total radiated farfield for three liner

configurations. The listener is on the frame of

reference of the flying aircraft. The solid curve is

for a ring patch of liner beginning immediately after

the cowl's leading edge, etc. Each curve displays
- Inc - ! - th 2 •

201og101Ro(Pv +p, +p, )/pU I, wlth the argument of the

1ogz0 provided by Eqs. 60a and 63a. Ro is the

dimensionless range to the farfield observer. Modal

index v is zero.
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Fig. 8b Predictions of 201og101R_,i"C/pU2J and

201og_01Ro(_,i"c+_e+_thi/pU21, which respectively apply to

an unducted and to a ducted propeller. The frame of

reference is that of the moving aircraft. The cowl

contains no liner and _th is consequently zero. The

directivity pattern for the propeller in free field (the

solid curve) has a null at eo=143 ° due to the cosSo+M

factor on the third line of Eq. 60a. The "ILa0" label

marks a pair of sectors over which the cowl has a

positive, though modest noise shielding effect (a

positive insertion loss). Modal index v is zero.
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0

eo=180 °

Fig. 9a Predictions of total radiated farfield for three liner

configurations. The listener is on the ground. The

solid curve is for a ring patch of liner beginning

immediately after the cowl's leading edge, etc. Each
- i.c+- _+- th 2curve contains the result of 201ogl01Ro(P , p, p, )/pu [,

with the argument of the log10 provided by Eqs. 60b and

63b. Ro is the dimensionless range to the farfield

observer. Modal index v is zero.
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01
O
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IL >/O

Fig. 9b Predictions of 201ogz0lR_C/p_] and

201ogz01Ro(P,t"C+p,'+p,th)IpU2], which respectively apply to

an unducted and to a ducted propeller. The incident-

field curve displays a null at 8o=90 ° as required by the

cOSSo factor on the third line of Eq. 60b. The listener

is on the ground. The cowl contains no liner and _th is

consequently zero. The "ILa0" label marks a pair of

sectors over which the cowl has a positive noise-

shielding effect (a positive insertion loss). Modal
index v is zero.
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Fig. 10a Comparison of radiated patterns for ducted and unducted

cases for Jvl-5. The tuned liner for the ducted case

abuts the cowl's leading edge (see insert). Its loss

factor _ is unity. "IL_0" labels mark those field

positions for which the cowl has a beneficial effect.
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Fig. 10b Comparison of total radiated patterns for the three

liner-patch layouts of previous figures, for ]vi=5.

Each patch is resistance-controlled (resonating and

highly damped) and the three curves do not differ

significantly except in their lower levels.
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